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Introduction
Collective motion:

Applications:

Objectives:

• Particles with coupled oscillator dynamics in symmetric cir-
cular formations [1, 3, 2, 4].

• Changing from one cluster configuration to another.

Particles with coupled oscillator dynamics
N self-propelled particles in the plane with unitary speed [2]:

ṙk = eiθk (1a)
θ̇k = uk(rrr, θθθ) (1b)

for k = 1, . . . , N .
Position: rk = xk + iyk ∈ C.
Direction of the speed vector: eiθk = cos θk + i sin θk.
Phase (heading angle): θk ∈ R.
rrr
.
= (r1, . . . , rN )T ∈ CN , θθθ .

= (θ1, . . . , θN )T ∈ TN .

Rotation center of particle k, when θ̇k = ω0:

ck
.
= rk + ω−10 ieiθk. (2)
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We are interested in particles sharing the same rotation cen-
ter, i.e., c1 = c2 = · · · = cN . It happens when Pccc = 0, with
P = IN − 1

N111111
T , for IN being the N × N identity matrix,

111 = (1, · · · , 1) and ccc = (c1, · · · , cN ).
The aim is to minimize the following potential:

S(rrr, θθθ) =
1

2
‖ Pccc ‖2, (3)

whose gradient is

Ṡ = 〈ċcc, Pccc〉 = ω−10

N∑
j=1

(ω0 − uj)
〈
eiθj, Pjccc

〉
, (4)

This inner product is defined as 〈z1, z2〉 = Re{z∗1z2}, for
z1, z2 ∈ C, and z∗1 is the conjugate of the complex number z1.

Choosing:

uk = ω0(1 +K0

〈
eiθk, Pkccc

〉
) (5)

leads to

Ṡ = −K0

N∑
j=1

〈
eiθj, Pjccc

〉2
≤ 0. (6)

Now, consider the m-th phase order parameter:

pmθ =
1

mN

N∑
j=1

eimθj (7)

with 0 ≤ |pmθ| ≤ 1/m, which produces the phase potential:

Um(θθθ) =
N

2
|pmθ|2. (8)

Theorem 1. Let 1 ≤ M ≤ N be a divisor of N . Then θθθ ∈ T
formsM symmetric clusters if and only if it is a global minimum
of the potential

UM,N (θθθ) =
M∑
m=1

KmUm (9)

with Km > 0 for m = {1, · · · ,M − 1}, KM < 0 (Proof in [4]).

−∂U
M,N

∂θk
=

1

N

M∑
m=1

N∑
j=1

Km

m
sin(m(θk − θj)). (10)

uk = ω0(1 +K0

〈
eiθk, Pkccc

〉
)− ∂UM,N

∂θk
. (11)

Model (1) with control (11) and configuration: N = 6, ω0 =
0.05, K = 0.1, Km = 0.18 for m < M and KM = −0.02:
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Time series for the order parameters (M = 3):
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Exchanging between formations
Aim: Go from a Mf clusters configuration to Mt clusters.

The transition works perfectly in the following two situations:

• I) Mf < Mt;

• II) Mf > Mt when (Mf/Mt) ∈ N.

Example:
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Problem: In some cases, the configuration with Mf clusters
may be a local minimum of the Mt so the transition never hap-
pens.

Example with Mf = 3 and Mt = 2: We start the system with 3
symmetric clusters and start the simulation for M = 2 clusters.
The transition only works if this initial condition is strongly per-
turbed as shown below:
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Solution: Suppress the previous configuration with the inclusion
of a new term into the potential (9):

U
Mt,N
Mf

:= UMt,N +
N

2
δ(Mf ,Mt)K1|pMfθ|2, (12)

where

δ(Mf ,Mt) =

{
1, Mf > Mt and Mf/Mt /∈ N
0, otherwise

. (13)

Here Km > 0 for m = {1, 2, · · · ,Mt− 1}, K1 > 0 and Km < 0
for m =Mt. The new gradient reads

−
∂U

Mt,N
Mf

∂θk
= 1

N

∑Mt
m=1

∑N
j=1

Km
m sin(m(θk − θj))

+δ 1
N

∑N
j=1

K1
Mf

sin(Mf (θk − θj))
, (14)

and the control

uk(rrr, θθθ) = ω0(1 +K0

〈
eiθk, Pkccc

〉
)−

∂U
Mt,N
Mf

∂θk
. (15)

Time series of Order Parameters for model (1) with Mt = 2
clusters, starting from a Mf = 3 clusters configuration: (a) Con-
trol (11); (b) Control (15):
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(b) Mf = 3, Mt = 2 with modified gradient

m = 1

m = 2

m = 3

Acknowledgments
The authors would like to thank the Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico - CNPq, process 458070/2014-9, the Coordenacao
de Aperfeicoamento de Pessoal de Nivel Superior - CAPES and the Sao Paulo
Research Foundation - FAPESP, processes 2015/50122-0 and 2017/04552-9.

References
[1] E.W. Justh and P.S. Krishnaprasad. Equilibria and steering laws for planar

formations. Systems and Control Letters, 52(1):25 – 38, 2004.

[2] Derek Paley, Naomi Ehrich Leonard, Rodolphe Sepulchre, Daniel
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