Exchanging between symmetric circular formations of moving particles Vander L. S. Freitas¹, Serhiy Yanchuk², Michael A. Zaks³, Elbert E. N. Macau^{1,4}

¹National Institute for Space Research, Brazil; ²Technical University Berlin, Germany; ³Humboldt University Berlin, Germany; ^{1,4}Federal University of Sao Paulo, Brazil vander.freitas@inpe.br

Introduction

Collective motion:

Applications:

$$U_m(\boldsymbol{\theta}) = \frac{N}{2} |p_{m\theta}|^2.$$
(8)

Theorem 1. Let $1 \le M \le N$ be a divisor of N. Then $\theta \in \mathbb{T}$ forms M symmetric clusters if and only if it is a global minimum of the potential

$$U^{M,N}(\boldsymbol{\theta}) = \sum_{m=1}^{M} K_m U_m \tag{9}$$

with $K_m > 0$ for $m = \{1, \dots, M-1\}$, $K_M < 0$ (Proof in [4]).

$$-\frac{\partial U^{M,N}}{\partial \theta_k} = \frac{1}{N} \sum_{m=1}^M \sum_{j=1}^N \frac{K_m}{m} \sin(m(\theta_k - \theta_j)).$$
(10)

Example with $M_f = 3$ and $M_t = 2$: We start the system with 3 symmetric clusters and start the simulation for M = 2 clusters. The transition only works if this initial condition is strongly perturbed as shown below:

Solution: Suppress the previous configuration with the inclusion

Objectives:

- Particles with coupled oscillator dynamics in symmetric circular formations [1, 3, 2, 4].
- Changing from one cluster configuration to another.

Particles with coupled oscillator dynamics

N self-propelled particles in the plane with unitary speed [2]:

 $\dot{r_k} = e^{i\theta_k}$ (1a) $\dot{\theta_k} = u_k(\pmb{r}, \pmb{\theta})$ (1b)

(2)

(5)

(6)

(7)

for k = 1, ..., N. Position: $r_k = x_k + iy_k \in \mathbb{C}$. Direction of the speed vector: $e^{i\theta_k} = \cos \theta_k + i \sin \theta_k$. Phase (heading angle): $\theta_k \in \mathbb{R}$. $\boldsymbol{r} \doteq (r_1, ..., r_N)^T \in \mathbb{C}^N, \boldsymbol{\theta} \doteq (\theta_1, ..., \theta_N)^T \in \mathbb{T}^N$.

Rotation center of particle k, when $\dot{\theta}_k = \omega_0$:

$$c_{k} \doteq r_{k} + \omega_{0}^{-1} i e^{i\theta_{k}}.$$

$$u_k = \omega_0 (1 + K_0 \left\langle e^{i\theta_k}, P_k \boldsymbol{c} \right\rangle) - \frac{\partial \partial}{\partial \theta_k}.$$
 (11)

Model (1) with control (11) and configuration: N = 6, $\omega_0 = 0.05$, K = 0.1, $K_m = 0.18$ for m < M and $K_M = -0.02$:

of a new term into the potential (9):

$$U_{M_f}^{M_t,N} := U^{M_t,N} + \frac{N}{2} \delta(M_f, M_t) K_1 |p_{M_f\theta}|^2, \qquad (12)$$

where

$$\delta(M_f, M_t) = \begin{cases} 1, \ M_f > M_t \text{ and } M_f / M_t \notin \mathbb{N} \\ 0, & \text{otherwise} \end{cases}.$$
(13)

Here $K_m > 0$ for $m = \{1, 2, \dots, M_t - 1\}$, $K_1 > 0$ and $K_m < 0$ for $m = M_t$. The new gradient reads

$$-\frac{\partial U_{M_f}^{M_t,N}}{\partial \theta_k} = \frac{1}{N} \sum_{m=1}^{M_t} \sum_{j=1}^{N} \frac{K_m}{m} \sin(m(\theta_k - \theta_j)) + \delta \frac{1}{N} \sum_{j=1}^{N} \frac{K_1}{M_f} \sin(M_f(\theta_k - \theta_j)), \quad (14)$$

and the control

$$u_{k}(\boldsymbol{r},\boldsymbol{\theta}) = \omega_{0}(1 + K_{0}\left\langle e^{i\theta_{k}}, P_{k}\boldsymbol{c}\right\rangle) - \frac{\partial U_{M_{f}}^{M_{t},N}}{\partial\theta_{k}}.$$
 (15)

Time series of Order Parameters for model (1) with $M_t = 2$ clusters, starting from a $M_f = 3$ clusters configuration: (a) Control (11); (b) Control (15):

We are interested in particles sharing the same rotation center, i.e., $c_1 = c_2 = \cdots = c_N$. It happens when Pc = 0, with $P = I_N - \frac{1}{N} \mathbf{11}^T$, for I_N being the $N \times N$ identity matrix, $\mathbf{1} = (1, \cdots, 1)$ and $c = (c_1, \cdots, c_N)$. The aim is to minimize the following potential:

$$S(\boldsymbol{r},\boldsymbol{\theta}) = \frac{1}{2} \parallel P\boldsymbol{c} \parallel^2, \tag{3}$$

whose gradient is

$$\dot{S} = \langle \dot{\boldsymbol{c}}, P\boldsymbol{c} \rangle = \omega_0^{-1} \sum_{j=1}^{N} (\omega_0 - u_j) \left\langle e^{i\theta_j}, P_j \boldsymbol{c} \right\rangle, \quad (4)$$

This inner product is defined as $\langle z_1, z_2 \rangle = \text{Re}\{z_1^*z_2\}$, for $z_1, z_2 \in \mathbb{C}$, and z_1^* is the conjugate of the complex number z_1 . Choosing:

$$u_k = \omega_0 (1 + K_0 \left\langle e^{i\theta_k}, P_k \boldsymbol{c} \right\rangle)$$

leads to

$$\dot{S} = -K_0 \sum_{j=1}^{N} \left\langle e^{i\theta_j}, P_j \boldsymbol{c} \right\rangle^2 \le 0.$$

Now, consider the m-th phase order parameter:

Exchanging between formations

Aim: Go from a M_f clusters configuration to M_t clusters. The transition works perfectly in the following two situations:

• I) $M_f < M_t;$

• II) $M_f > M_t$ when $(M_f/M_t) \in \mathbb{N}$.

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq, process 458070/2014-9, the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES and the Sao Paulo Research Foundation - FAPESP, processes 2015/50122-0 and 2017/04552-9.

References

- [1] E.W. Justh and P.S. Krishnaprasad. Equilibria and steering laws for planar formations. *Systems and Control Letters*, 52(1):25 38, 2004.
- [2] Derek Paley, Naomi Ehrich Leonard, Rodolphe Sepulchre, Daniel Grünbaum, and Julia K. Parrish. Oscillator models and collective motion: Spatial patterns in the dynamics of engineered and biological networks. *IEEE Control Systems Magazine*, 27(4):89–105, 2007.
- [3] Derek A Paley, Naomi Ehrich Leonard, and Rodolphe Sepulchre. Oscillator models and collective motion: Splay state stabilization of selfpropelled particles. In *Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on*, pages

with $0 \le |p_{m\theta}| \le 1/m$, which produces the phase potential:

Problem: In some cases, the configuration with M_f clusters may be a local minimum of the M_t so the transition never happens.

3935–3940. IEEE, 2005.

[4] R. Sepulchre, D.A. Paley, and N.E. Leonard. Stabilization of planar collective motion: All-to-all communication. *Automatic Control, IEEE Transactions on*, 52(5):811–824, May 2007.