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1. Abstract

The dynamical property of a dissipative two-dimensional discontinuous standard mapping are con-
sidered. The map is controlled by action and angle variables, also parameterized by two control
parameters namely, k controlling the intensity of the nonlinearity and γ the dissipation. When γ = 0
the non-dissipative model is recovered while any γ 6= 0 breaks the area preservation, leading to the
existence of attractors, including chaotic ones. We show that when starting from a large initial action,
the dynamics converges to chaotic attractors in an exponential decay in time, while the speed of the
decay depends on the dissipation intensity. We also characterize the chaotic behavior by the positive
Lyapunov exponents.

2. Methods

In this work we consider the discontinuous dissipative standard mapping

T :

{
In+1 = (1− γ)In + k sin(θn)sgn[cos(θn)]
θn+1 = [θn + In+1] mod (2π)

, (1)

where I and θ are the action and angle variables, k and γ ∈ [0, 1] are parameters responsibles for
the control the intensity of nonlinearity and dissipation respectively. The conservative case, obtained
when γ = 0, presents a diffusive regime in the action for k > 1 [1, 2]. The slow and quasilinear diffu-
sion regimes occur for k < 1 and k > 1, respectively. Figure 1 shows the evolution of an orbit for the
conservative case, i.e. for γ = 0, for the initial condition I0 = 0.01 and θ0 = 0.01 with (a) k = 0.01 and
(b) k = 10. One can see from Figure 1(a) that, in contrast of the conservative standard map, here the
mapping does not show the standard regular behavior: In this case the KAM theorem is not satisfied
due to the discontinuous function in (1). Also, Fig. 1(b) shows the diffusion of a conservative chaotic
orbit. Moreover, Fig. 1(c) shows the evolution of an orbit for the dissipative system using γ = 10−2

for the initial conditions I0 = 0.01 and θ0 = 0.01 with k = 10, such that diffusion of the action along the
chaotic attractor is observed.

Figure 1: Phase space for the discontinuous standard mapping (1) using the control parameters (a)
k = 0.01 and γ = 0, (b) k = 10 and γ = 0, and (c) k = 10 and γ = 10−2.

3. Results

In this section we discuss an analytical argument for approaching orbits to the chaotic attractors. We
then start with an initial condition I0 and iterate the second equation of the mapping (1) we can obtain
a generalized expression given by

In = (1− γ)nI0 + k
n−1∑
i=0

(1− γ)n−1−i sin(θi) (2)

Considering a small value of γ and realizing expansions in Taylor’s series we can obtain the equation

In = I0e
−γn, (3)

meaning an exponential decay towards the chaotic attractors. Figure 2(a) shows the behavior of I
given by mapping (1) as a function of n using k = 10 for different initial actions and values of γ (as
labeled in the figure). The exponential fitting I = AeBn (yellow curve) to the numerical data (black
curve) with γ = 8 × 10−4 and I0 = 12 × 104 provides the fitting constants A = 11, 633 × 105 and
B = −0.000078465. Comparing with Eq. (3) we conclude that γ corresponds well to the coefficient B.
Thus, by considering the following transformations I → I/I0 and n → nγ we show in Fig. 2(b) the
merge of the four different curves shown in 2(a) onto a single plot, therefore giving evidences that the
exponential decay is scale invariant with respect to the control parameter γ as well as to the initial
action I0.
Let us now measure the Lyapunov exponents for the chaotic attractors [3,4]

λj = lim
n→∞

1

n
ln |Λnj |, j = 1, 2, (4)

where Λ(n) are the eigenvalues of the matrix M =
∏n
i=1 Ji(θ, I) with Ji representing the Jacobian

matrix of the mapping evaluated along the orbit.

Figure 2: Decay for the chaotic attractor using k = 10: (a) behavior of I × n for different initial con-
ditions and values of γ (as labeled in the figure) and (b) overlap of all curves in a single universal
curve.

Figure 3 shows the behavior of the Lyapunov exponents of mapping (1). The control parameters
used were k = 10 and γ = 10−2 and a set of six different initial conditions, as labeled in the figure.
Each initial conditions was iterated 108 times. Figure 3(a) shows the behavior of the positive Lyapunov
exponents. An average over the set of different curves yields λ1 = 2.00300(4). Figure 3(b) shows the
behavior of the negative Lyapunov exponent where the average value gives λ2 = −2.01304(4). Figure
3(c) shows the sum of the average values of the Lyapunov exponents λ1 +λ2 ∼ −10−2 which has the
same magnitude than γ.

Figure 3: Plot of the behavior of the (a) positive and (b) negative Lyapunov exponents for the control
parameters k = 10 and γ = 10−2. (c) Sum of the average values of the Lyapunov exponents λ1 and
λ2.

4. Conclusions

To summarize, we have studied in this work using extensive simulations, that when we apply control
parameters of the intensity of nonlinearity and dissipation in a nonlinear two-dimensional mapping
of a kicked rotor, we transform it in a discontinuous dissipative standard mapping and find a chaotic
attractor when the variables of the action and angle are evolved over time. To confirm the intensity of
chaos in the mapping we used the Lyapunov exponents.
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