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Introduction
The use of complex networks to model neural systems found a great back-
ground where the neurons are described by the nodes and their connections
as the edges of the network [1]. By this modeling, it is possible to analyze the
synchronization characteristics of the network, which is an important charac-
teristic of the neural system.
Here, a network composed of N = 2 000 bursting thermally sensitive neurons
is simulated by using a Hodgkin-Huxley-type neural model [2]. In this context,
synchronization phenomena are studied as a function of the neurons’ temper-
ature and coupling strength, where bursting and spike synchronizations are
observed. The mechanism that generates these behaviors may be understood
as an interplay between the individual-uncoupled-neurons dynamics and the
coupling influence.
Neural model
The main equation of the model of Braun et. al. [2], which describes the
membrane potential evolution, is given by:

Cm
dVi
dt

= −Ji,Na − Ji,K − Ji,sd − Ji,sa − Ji,L + Ji,coupling, (1)
in which Cm is the membrane capacitance, Ji,υ is the ionic flux over the ith
neuron membrane and related to Sodium (Na), Potassium (K) and leak (L)
currents. Additionally, two slow fluxes due to Calcium, (sd) and (sa) are
considered. The parameters of the model were chosen following [3]
The coupling term, Ji,coupling, is modeled by excitatory chemical synapses:

Ji,coupling = ε(Vsyn − Vi)
χ

N∑
j=1

ei,jrj, (2)

where ε is the coupling strength (mS/cm2), χ = 4.8 is the average number
of connections, Vsyn = 20 mV is the synaptic reversal potential, and rj is the
kinetic term [3].

Synchronization quantifiers

Figure 1 – Dynamics of the neural model. The burst beginning is given by the U maxima.

The Kuramoto order parameter [4] can measure phase synchronization:

R(t) =

∣∣∣∣∣∣ 1
N

N∑
k=1

eiθk(t)
∣∣∣∣∣∣ . (3)

Here, θ is the phase associated with each neuron, given by:

θi(t) = 2πki + 2π t− tk,i
tk+1,i − tk,i

, tk,i < t < tk+1,i. (4)

If R→ 1(0), the network is (not) on a phase synchronized state.
Besides that, the recurrence analysis [5] is used to analyze synchronization

Rij(µ) = Θ(µ− ||wi −wj||),wi ∈ R, i,j = 1,2, · · · ,S, (5)
where µ is the recurrence threshold and the recurrence matrix (R) is evaluated
from the mean-field network time series V (t). In this scenario, the determinism
is the ratio of the recurrent points that belong to diagonal structures:

∆(`min,µ) =

S∑
`=`min

`P (`,µ)

S∑̀
=1
`P (`,µ)

. (6)

If ∆→ 1(0), the network is (not) on a phase synchronized state.
Results
Main results of synchronization and its relation to the individual-uncoupled-neural behavior for different neurons’ temperature and coupling values.

Figure 2 – R and ∆ as a function of T and ε (panels (a) and (b)) (SS - spike synchronization; PS - Phase synchronization.) Panels (c), (d), and (e) depict the raster plot of the network. Panels
(f), (g), and (h) depicts the Inter-Spike intervals and panels (i), (j), and (k) depict the Inter-Burst intervals as a function of temperature. Panels (l), (m), and (n) show the Fourier transform of
the individual neuron signal. The synchronization for the weak coupling regime is related to the periodic behavior of the uncoupled neuron.

Conclusions
• Burst and spike synchronizations are observed in the parameter space of
neurons’ temperature and coupling;
• Increases on the neurons’ temperature make the network depicts a
higher synchronization level;
• The recurrence quantification analysis is able to measure spike and burst
synchronization;
• The interplay between the individual behavior of neurons and the
coupling results in the synchronization phenomena observed.
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