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1 Abstract

•Hamilton Systems - a mathematical formalism developed by Hamil-
ton to describe the evolution of equations of the physical system.

•Discrete mappings - the evolution equations allows us to calculate
an state In+1 at a time n + 1 from the state In at the previous time
n.

•Dissipation is introduced in the system.

• Lyapunov exponents are used to characterize the chaotic attractors
and show the organization of the periodicity windows.

2 Motivation

We discuss some dynamical properties for a set of two dimensional
Hamiltonian mappings. We assume that there is a two-dimensional
integrable system that is slightly perturbed. The Hamiltonian function
that describes the system is

H(I1, I2, θ1, θ2) = H0(I1, I2) + εH1(I1, I2, θ1, θ2) , (1)

where the variables Ii and θi with i = 1, 2 correspond respectively
to the action and angle and ε controls a transition from integrability
to non integrability. A two dimensional mapping which qualitatively
describes the behavior of (1) is

T :

{
In+1 = In + εH(θn, In+1)

θn+1 = [θn + F (In+1) + εP (θn, In+1)] mod(2π)
(2)

where H , F and P are assumed to be nonlinear functions of their va-
riables.

For many mappings in the literature, the function P (θn, In+1) = 0.
Hence, if we keep H as H(θn) = sin(θn), and vary F , to illustrate
applicability of the formalism, we nominate the following mappings:

• Considering F (In+1) = In+1, the Taylor-Chirikov’s map is obtai-
ned;

• F (In+1) = 2/In+1, the Fermi-Ulam accelerator model is recove-
red;

• F (In+1) = ζIn+1, with ζ constant, the bouncer model is obtained;

• F (In+1) = 1/I
3/2
n+1, the kepler map is found.

3 The Model

We consider the introduction of dissipation in a family of two-
dimensional mappings. The mappings are defined as

T :

{
In+1 = |δIn − (1 + δ)ε sin(2πθn)|
θn+1 =

[
θn + I

γ
n+1

]
mod 1

, (3)

where the parameter ε controls the non-linearity, δ is the parameter
controlling the amount of dissipation and γ is a free parameter. If
δ = 1 the conservative case is recovered.

In the dissipative case the determinant of the Jacobian matrix of the
mapping (3) is Det J = δ sign [δIn − (1 + δ)ε sin(2πθn)], where the
function sign(u) = 1 if u > 0 and sign(u) = −1 if u < 0.

4 Parameter Space

To explore the influence of the dissipation in the parameter space
δ vs. ε, we use two techniques: (i) calculation of the maximum Lya-
punov exponent, and (ii) computation of periods. While in the latter,
the period is directly computed by counting the number of points that
compose the attractor. The Lyapunov exponent were computed as

λj = lim
n→∞

1

n
ln
∣∣∣Λ(n)
j

∣∣∣ , j = 1, 2, . . . (4)

where Λ
(n)
j are the eigenvalues of the matrix M = Πni=1Ji(θ, I) and Ji

is the Jacobian matrix of the mapping evaluated along the orbit (θi, Ii).
If at least one λj is positive, then the system is withing a chaotic re-
gime. On the other hand, when trajectories are describing periodic
oscillations, all λj are negative. λ = 0 indicates the attractor is under-
going a bifurcation.

Fig. 1: Parameter space δ vs. ε for γ = −1. The color palette
indicates the maximum Lyapunov exponents. Source [7].

Fig. 3: (a) Sequence of slightly different complex sets colored
according to the maximum Lyapunov exponent and (b) the

corresponding period of the orbits. Source [7].

Fig. 4: Structures resulting from a cubic homoclinic tangencies
colored by the Lyapunov exponent: (a) spring-area and (b)

saddle-area. Source [7].

Fig. 5: Magnification of the region delimited by a rectangle in
Fig. 4(a). Source [7].

Fig. 6: Parameter space δ vs. ε highlighting part of a street shown in
Fig. 1 colored by the Lyapunov exponent while in (b) the color

identifies the period of the structure. Source [7].

5 Final Comments

We have considered a family of two-dimensional mappings parame-
tarized by ε and δ control parameter. The choose of the control pa-
rameter δ = 1 recover the conservative system. We used the Lyapu-
nov exponents to characterize the chaos and by observing structures
of periodicity in the high definition parameter space, we identified the
shrimps structures.
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