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A
¯
BSTRACT

Some statistical properties related to the diffusion in energy for an ensem-
ble of classical particles in a bouncing ball model are studied. The particles
are confined to bounce between two rigid walls. One of them is fixed while
the other oscillates. The dynamics is described by a two dimensional non-
linear map for the velocity of the particle and time at the instant of the
collision. Two different types of change of momentum are considered: (i)
periodic due to a sine function and; (ii) stochastic. For elastic collisions case
(i) leads to finite diffusion in energy while (ii) produces unlimited diffusion.
On the other hand, inelastic collisions yield either (i) and (ii) to have limited
diffusion. Scaling arguments are used to investigate some properties of the
transport coefficient in the chaotic low energy region. Scaling exponents are
also obtained for both conservative and dissipative case for cases (i) and (ii).
We show that the parameter space has complicated structures either in Lya-
punov as well as period coordinates. When stochasticity is introduced in the
dynamics, we observed the destruction of the parameter space structures.
This is a reviw of a paper accepted for publication in 2014 [1].

THE MODEL, THE MAP AND NUMERICAL RESULTS

The model we consider is a simplified version of the Fermi-Ulam model[2].
It consists of a classical particle - or an ensemble of non-interacting particles
- confined to bounce between two rigid walls. Because of the simplification
both walls are assumed to be fixed. However when the particle collides with
one of them, say the one in the left, it suffers an exchange of energy and
momentum due to the collision as if the wall were moving. The other wall
is introduced as a returning mechanism for the particle to collide again with
the wall responsible for the exchange of energy. Considering dimensionless
variables (see [3]), the mapping that describes the dynamics of the particle
is written as

T :

{

φn+1 = [φn +
2
vn

+ 2πδZ] mod(2π)

vn+1 = |αvn − (1 + α)ǫ sin(φn+1)|
, (1)

where α ∈ [0, 1] denotes the restitution coefficient, ǫ ∈ [0, 1] corresponds to
amplitude of the maximum velocity of the moving wall and δ ∈ [0, 1] corre-
sponds to the strength of the stochastic perturbation. Let us discuss more on
the stochastic perturbation. Indeed in a real experiment, the position of the
moving wall is given by an external engine with limited power. Of course the
stochastic perturbation could be interpreted as due to imperfections of the
system. As for example the engine suffering influences of external noise, like
electric fluctuations, therefore causing disturbs to the motion of the moving
wall. Additionally, one may think the particle, which in an experiment could
be a sphere, has also imperfections in the shape. Most likely such imper-
fections could lead the particle to rotate, transferring translational energy
to rotational. All of these terms can be modelled by a stochastic perturba-
tions. The term Z ∈ [0, 1) is a uniform random number obtained by using
a generator RAN2 in Fortran code.
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Analytical result
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Fig. 1) Plot of: (a) vrms as a function of ǫ for three different values of the maxi-

mum number of iterations nmax namely (nmax = 104, nmax = 106 and nmax = 108).

(b) Rescale of the vertical axis for the curves shown in (a) after the transformation

v̄ → v̄/n0.514
max . The analytical results are shown as blue straight lines.

Considering the second equation of the map (1), we can show after an
ensemble average that

v2n+1 = α2v2n +
(1 + α)2

2
ǫ2, (2)

where v2 corresponds to the average of v2. In the conservative case α = 1
the average (RMS) velocity grows with an exponent 1 with respect to ǫ and
1/2 with respect to n:

vrms =

√

v2 =
√

v20 + 2ǫ2n , (3)

for large n, or small v0 (see Fig. [1]).

In the paper analytical results for the root mean square velocity (vrms)
are calculated when α < 1. For n → ∞ we find

vrms = vsat =
√

(1 + α)/2(1− α)−1/2ǫ . (4)

Thefore, vsat ∝ ǫα1(1− α)α2 and we thus have α1 = 1 and α2 = −0.5.
Considering small values of v0 in the Eq. (3) and equating to Eq. (4), we
find the crossover nx given by the followin equation

nx =

(

1 + α

4

)

(1− α)−1 . (5)

The crossover nx scales as (1 − α)−1 independent of ǫ. Therewith,
nxǫ

2 ∝ ǫz1(1− α)z2 we thus have z1 = 2 and z2 = −1.

The RMS velocity gives only a single measure of the distribution. We
propose that the above exponents apply more generally, and test this by
considering the deviation around of the average velocity defined as

ω(n, ǫ, α) =
1

M

M
∑

k=1

√

vk
2(n, ǫ, α)− vk

2(n, ǫ, α). (6)

Here M denotes an ensemble of different initial conditions. Using ω we
obtained the same values for z1 and z2.
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Fig. 2) Plot of ω vs n for three different values of ǫ and α. The slope of growth is

β ∼= 0.5 obtained after a power law fit. The saturation and crossover are indicated in

the figure.

Histograms and diffusion coefficient

In the paper[1] we study the histogram for the number of particles that
reached certain height h. We end up with a decay of the histogram after
reaching the peak at np described by H ∝ exp[−Dnπ2/h2]. Here D is

the diffusion coefficient. Indeed D can be written as D = 4h2µ/π2, where
µ = (1− α)z2. We also show that

v2n+1 − v2n =
〈

∆2
〉

= v2n(α
2 − 1) +

(1 + α)2

2
ǫ2.

In the limit of α ∼= 1 but still less than 1, the diffusion coefficient is
then given by D ∼=

〈

∆2
〉

/2. We conclude in the limit of α ∼= 1 that

D/[(1 + α)2ǫ2] ∼= 1/4 for the initial velocity v0 → 0. The limit D = 1/4 is
shown in Figs. 5(b,c) as dashed lines.
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Fig. 3) Plot of: (a) histogram of frequency for the number of particles that have

reached h as a function of the number of collisions n for different control parameters.

(b) Overlap of (a) onto a single and universal plot after a rescaling of the horizontal

axis.
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Fig. 4) Plot of: (a) np vs (1− α) for ǫ = 10−3; (b) npǫ
2 vs ǫ using α = 0.999.
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Fig. 5) Plot of: (a) D vs h for different values of α and ǫ; (b) overlap for all curves

presented in (a) after a rescale of the axis for low values of h; (c) overlap of all curves

presented in the item (a) after a proper rescale in the axis for high values of h.

Parameter space

The Lyapunov exponent can be obtained from

λj = lim
n→∞

1

n
ln |Λj

(n)|, j = 1, 2 (7)

where Λj
(n) are the eigenvalues of the matrix M̃ =

∏n
i Ji(vi, φi) and Ji

is the Jacobian matrix evaluated along the orbit (vi, φi). If at least one of
the λj is positive, then the system is said to have chaotic components. The
colors in the Fig. 6(a,c,e,g,h) are Lyapunov exponents.
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Fig. 6) Parameter space for δ = 0 considering a grid of 103 × 103 cells. For (a), (c),

(e), (g) and (h) we present the maximum Lyapunov exponent, where the exponents

were coded with a continuous colour scale ranging from red-yellow (negative expo-

nents) to green-blue (positive exponents). For (b), (d) and (f) the colours represent

the period. We have considered fixed initial conditions of v0 = 0.1 and φ0 = 6.

Therefore the position of the periodic regions are given by: (i) for Fig.
6(e)

α(ǫ) = 0.069(2) + 0.295(3)ǫ; (8)

(ii) for Fig. 6(g)

α(ǫ) = 0.305(3) + 0.346(4)ǫ; (9)

and finally (iii) for Fig. 6(h)

α(ǫ) = 4.09(5) + 11.7(1)ǫ. (10)

Considering that the organization of the periodic regions are described by
the three equations above, we can use such relations to obtain the bifurca-
tion diagrams for the variable velocity as a function of ǫ, as shown in Figs.
7(a,b,c) and using respectively Eqs. (8), (9) and (10).

Fig. 7) Plot of a bifurcation diagram for the variable velocity as function of ǫ where

α is given by the following expressions: (a) Eq. (8); (b) Eq. (9); (c) Eq. (10). We

have considered fixed initial conditions of v0 = 0.1 and φ0 = 6.

Fig. 8 shows the influence of δ in the parameter space.
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Fig. 8) Plot of the parameter space coloured by the Lyapunov exponent considering

the same range of parameters as shown in Fig. 6(c). We considered different values

of δ: (a) δ = 0.00484; (b) δ = 0.00024; (c) δ = 0.01.
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