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1. Introduction

The observation of dynamic systems has always fascinated the human being. It is not difficult to come
across studies on this subject in Classical Philosophy, Classical Mechanics, among other currents of
study, which aimed to understand the evolution of a dynamic system. However, not all systems be-
haved linearly, that is, predictably. Thus arises the study of nonlinear dynamic systems. The study of
nonlinear dynamical systems occurs by observing the behavior of a system in a certain time interval,
through the elaboration and development of differential equations. It is noteworthy that these sys-
tems do not follow the known algebraic parameters, so in these cases we use the tool called phase
space to represent the dynamic behavior of the system through numerical integration. Only after this
step is it possible to classify the system as Conservative (when external forces the system is not
considered) or Dissipative (considering forces external to the system). The relevance of the research
is in its scope, as it can be used to describe problematic situations in various areas of knowledge,
such as: electrical, mechanical, biological. It is precisely for these reasons that many scientists have
devoted themselves to this subject in recent decades. [1–4]: as the French mathematician Henri
Poincaré, [5, 6] and the American meteorologist Edward Lorenz. Finally, the procedure presented
in the study can be applied to many systems because its approach is wide. In this paper, we con-
sider the standard Chirikov mapping described by a two-dimensional mapping on moment and angle
variables. We built the phase space for the conservative system and observed a mixed structure
composed of chaotic sea, periodic islands and a set of invariant curves. The dissipation is introduced
into the system and large Chaotic attractors are observed. The maximum chaotic attractors as a
function of control parameters is investigated and provide an appropriate energy law. To characterize
the chaotic behavior of Lyapunov exponents.

2. Methods

In this work we consider the dissipative standard mapping given by [7]

T :

{
In+1 = (1− γ)In + k sin(θn)
θn+1 = θn + In+1 mod(2π)

, (1)

where I is the momentum variable and θ is the angle variable, γ controls dissipation and k controls
the intensity of the nonlinearity. For γ = 0 recovers the conservative system. Figure 1(a) shows the
phase space for the conservative system using the control parameters γ = 0 and k = 1, such that we
can observe an chaotic sea and periodic islands. Figure 1(b) shows the phase space for the dissipa-
tive system using the control parameters γ = 10−3 and k = 100. For this case, due to dissipation we
note that the structure observed to conservative system converges for a large chaotic attractor due
the choice of the control parameters.

Figure 1: Phase Space: (a) Conservative system for k = 1 and γ = 0 and (b) Dissipative system for k = 100 and
γ = 10−3.

3. Results

Let us now discuss about the behaviour of the maximum of the chaotic attractors denoted by I∗.
Figure 2 shows the behaviour of the I∗ as a function of the control parameters k and γ. To build
the figure 2(a) we fixed the value of the control parameter k = 100 and consider γ in the range
γ ∈ [10−5, 10−3]. Figure 2(b) we fixed the value of the control parameter γ = 10−3 and consider k
in the range k ∈ [10, 104]. In both cases we evaluated the initial conditions 108 iterations and ob-
tain the maximum position of the chaotic attractors. A power law fitting provides α1 = 1.001(6) and
α2 = −0, 456(7) respectively.
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Figure 2: Maximum value of the chaotic attractor I∗: (a) γ = 10−3 and k ∈ [10, 104] and (b) k = 100 and γ ∈ [10−5, 10−3].

Now we discuss about the description of the chaotic behaviours. For this, we use the Lyapunov ex-
ponents. Basically, this technique measure the divergence rate of the trajectories. When there is at
least one λ > 0 (positive value) the orbital system is chaotic, for λ < 0 (negative value) the system is
described with periodic orbit. The Lyapunov exponents are defined as

λj = lim
n→∞

1

n
ln |Λ(n)

j |, j = 1, 2, (2)

where Λ
(n)
j are the eigenvalues of the matrix M = Πni=1Ji(θ, I) where Ji is the Jacobian matrix of the

mapping evaluated along the orbit.
Figure 3 shows the behavior of the Lyapunov exponents using two different values of k and γ for
five different initial conditions as labeled in the figure. Figure 3(a) shows the behavior for k = 100
and γ = 10−3, while figure 3(a) shows the behavior for k = 1000 and γ = 10−4. The average of the
convergence of the Lyapunov exponents provides λ̄1 = 3.912(1), where the error 0.001 corresponds to
a standard deviation of the five sample and λ̄1 = 6.2144(8), where the error 0.0008 corresponds to the
standard deviation respectively.

Figure 3: Lyapunov Exponent: (a) k = 100 and γ = 10−3 and (b) k = 10000 and γ = 10−4.

4. Final comments

Some properties of the standard map were presented in this work, among them the conservative
case and the dissipative case; because these properties describe our nonlinear system, the pulsed
rotor. With the aid of computer programs it was possible to show the evolution of orbits and build
the phase space, in order to classify them as conservative or dissipative. Such first fruits allowed us
to present the maximum chaotic attractors and consequently the critical exponent of our model. In
this line, the work investigated and determined the average of Lyapunov exponents and thus, as our
exponents are positive, the intensity of chaotic orbits in the mapping was evidenced.
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