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Introduction

In this work, we consider a discrete mapping described by momentum, I, and generalized coordenate, 6, and controled by two parameters: €, tunning the intensity of nonlinearity, and -, describing the form of divergence

of 8 when I — 0.

The goal of this work is to describe the curves of average momentum, I,5(n), in terms of n, from a probability function, P(I(n)), to observe a given momentum I at an instant n. Therefore, we will solve the Diffusion
equation analitically considering the cases: (i) the initial action is null, /j = 0, and (ii) the initial action is nonzero, Iy # 0.

‘ Results and Discussions I

The mapping studied is given by:
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where € 1s a parameter that controls the transition from integrabiliy, when € = 0, to nonintegrability, when
e # 0, and v > 0 is a free parameter that controls the behavior of 6,, 11 in the limit where 7,1 — 0.
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Figure 1: Phase space of (1) withy =1, (a) € = 1072 and (b) e = 1073, The invariant spanning curves
are represented by fisc and shown in red color.

The location of the first invariant spanning curves is obtained connecting the mapping (1) with Chirikov-
1

T .
Taylor mapping and we obtain that [ ;4. = { [g f} &3, where K ¢ f denotes the transition from local

chaos to global chaos. The observable of interest is defined as I,y,5(n) = ﬁ(n), where:
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M corresponds to the ensemble average of 6 € |0, 27] and n 1s the number of iterations of the mapping.

The dynamics in the chaotic sea can be compared to a normal diffusive process, so we solve the diffusion
equation that, without external fields, 1s given by:
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where D is the diffusion coefficient obtained from D = <A—2[2> = ]_n_|_1 — 12, = %2 and P(I,n) is the
probability of observing a specific momentum I in an instant n.
The boundary conditions for the problem are given by 57 8P = 0, that 1s, there 1s no flux of particles
]:j:[fisc

through the invariant spanning curves.

The procedure used to obtain a possible solution of diffusion equation is the separation of variables writ-
ing P(I,n) = X(I)N(n), where X () is a function that depends only on I and N (n) is another function
that depends only on n. After some algebra, we have:
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where [ defines the initial momentum along the chaotic sea, n corresponds to the iteration number of the
mapping and £ comes from the boundary conditions.

Once the phase space 1s symmetric with respect to /, the observable studied 1s ﬁ(n) instead I(n). This
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observable expression can be obtained from 2 = [ I?P[I(n)]dI, which leads to:
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Figure 2: Plot of Iy;ms vs.n with ¢ = 1072,1073,10~* and v = 1 and Iy = 0. Symbols represent
numerical simulations and continuous lines represent theoretical results.
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Figure 3: Plot of Iy1,5s vs.n with € = 1072,1073,10~* and ~v = 1 and different values of Iy. Symbols
represent numerical simulations and continuous lines represent theoretical results.

‘ Conclusions I

From the diffusion equation, we obtained a solution analytically using the method of separation of vari-
ables, considering the cases that initial momentum 1s null and initial momentum different from zero. This
1s our original contribution for the problem.
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