

Analytical Solution of The Diffusion Equation in Hamiltonian Mappings

Célia Mayumi Kuwana*, Edson Denis Leonel

Universidade Estadual Paulista "Júlio de Mesquita Filho" - *campus* Rio Claro *celiamkuwana@hotmail.com

1st Perspectives on Oscillation Control

Introduction

In this work, we consider a discrete mapping described by *momentum*, I, and generalized coordenate, θ , and controled by two parameters: ε , tunning the intensity of nonlinearity, and γ , describing the form of divergence of θ when $I \to 0$.

The goal of this work is to describe the curves of average *momentum*, $I_{rms}(n)$, in terms of n, from a probability function, P(I(n)), to observe a given *momentum* I at an instant n. Therefore, we will solve the Diffusion equation analitically considering the cases: (i) the initial action is null, $I_0 = 0$, and (ii) the initial action is nonzero, $I_0 \neq 0$.

Results and Discussions

The mapping studied is given by:

$$T: \begin{cases} I_{n+1} = I_n + \varepsilon \sin(\theta_n) \\ \theta_{n+1} = \left(\theta_n + \frac{1}{|I_{n+1}|^{\gamma}}\right) \mod(2\pi) \end{cases},$$
(1)

where ε is a parameter that controls the transition from integrability, when $\varepsilon = 0$, to nonintegrability, when $\varepsilon \neq 0$, and $\gamma > 0$ is a free parameter that controls the behavior of θ_{n+1} in the limit where $I_{n+1} \to 0$.

Figure 1: Phase space of (1) with $\gamma = 1$, (a) $\varepsilon = 10^{-2}$ and (b) $\varepsilon = 10^{-3}$. The invariant spanning curves

CAPES

Figure 2: Plot of I_{rms} vs.n with $\varepsilon = 10^{-2}, 10^{-3}, 10^{-4}$ and $\gamma = 1$ and $I_0 = 0$. Symbols represent numerical simulations and continuous lines represent theoretical results.

are represented by fisc and shown in red color.

The location of the first invariant *spanning* curves is obtained connecting the mapping (1) with Chirikov-Taylor mapping and we obtain that $I_{fisc} = \left[\frac{\gamma}{K_{ef}}\right]^{\frac{1}{\gamma+1}} \varepsilon^{\frac{1}{\gamma+1}}$, where K_{ef} denotes the transition from local chaos to global chaos. The observable of interest is defined as $I_{rms}(n) = \sqrt{\overline{I^2}(n)}$, where:

$$\overline{I^{2}}(n) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{n} \sum_{j=1}^{n} I_{i,j}^{2},$$
(2)

M corresponds to the ensemble average of $\theta \in [0, 2\pi]$ and n is the number of iterations of the mapping.

The dynamics in the chaotic sea can be compared to a normal diffusive process, so we solve the diffusion equation that, without external fields, is given by:

$$\frac{\partial P(I,n)}{\partial n} = D \frac{\partial^2 P(I,n)}{\partial I^2},$$
(3)

where D is the diffusion coefficient obtained from $D = \frac{(\Delta \overline{I^2})}{2} = \overline{I^2}_{n+1} - \overline{I^2}_n = \frac{\varepsilon^2}{4}$ and P(I, n) is the probability of observing a specific *momentum* I in an instant n.

The boundary conditions for the problem are given by $\frac{\partial P}{\partial I}\Big|_{I=\pm I_{fisc}} = 0$, that is, there is no flux of particles through the invariant *spanning* curves.

The procedure used to obtain a possible solution of diffusion equation is the separation of variables writing P(I, n) = X(I)N(n), where X(I) is a function that depends only on I and N(n) is another function that depends only on n. After some algebra, we have:

$$P[I(n)] = \frac{1}{2I_{fisc}} + \frac{1}{I_{fisc}} \sum_{k=1}^{\infty} \cos\left[\frac{k\pi(I-I_0)}{I_{fisc}}\right] e^{-\frac{k^2\pi^2 Dn}{I_{fisc}^2}}.$$

Figure 3: Plot of I_{rms} vs.n with $\varepsilon = 10^{-2}, 10^{-3}, 10^{-4}$ and $\gamma = 1$ and different values of I_0 . Symbols represent numerical simulations and continuous lines represent theoretical results.

Conclusions

From the diffusion equation, we obtained a solution analytically using the method of separation of variables, considering the cases that initial *momentum* is null and initial *momentum* different from zero. This is our original contribution for the problem.

References

where I_0 defines the initial *momentum* along the chaotic sea, n corresponds to the iteration number of the mapping and k comes from the boundary conditions.

Once the phase space is symmetric with respect to I, the observable studied is $\overline{I^2}(n)$ instead $\overline{I}(n)$. This observable expression can be obtained from $\overline{I^2} = \int_{I_{ex}}^{I_{fisc}} I^2 P[I(n)] dI$, which leads to:

$$\overline{I^2} = I_{fisc}^2 \left[\frac{1}{3} + \frac{4}{\pi^2} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \cos\left(\frac{k\pi I_0}{I_{fisc}}\right) e^{-\frac{k^2 \pi^2 Dn}{I_{fisc}^2}} \right].$$
 (5)

So:

(6)

(4)

- [1] Balakrishnan, V. Elements of Nonequilibrium Statistical Mechanics. CRC Press, Nova Yorke, 2008.
- [2] Leonel, E.D, Penalva, J. Teixeira, R.M.N., Costa Filho, R.N., Silva, M.R., de Oliveira, J.A. A dynamical phase transition for a family of Hamiltonian mappings: A phenomenological investigation to obtain the critical exponents. Physics Letters A, **379**: 1808, 2015.
- [3] Leonel, E.D., McClintock, P.V.E., da Silva, J.K.L. *Fermi-Ulam accelerator model under scaling analysis*. Physical Review Letters, **93**: 014101, 2004.
- [4] Leonel, E.D., Kuwana, C.M. An Investigation of Chaotic Diffusion in a Family of Hamiltonian Mappings Whose Angles Diverge in the Limit of Vanishingly Action. Journal of Statistical Physics, 170: 69, 2018.

Acknowledgment

C.M.K. thanks to CAPES, E.D.L. thanks to CNPq and to FAPESP for support.