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Introduction
One of the ways to achieve nuclear fusion is by using magnetic fields to confine hot ionized plasma. However, the road to controlled fusion is steep, and one of the
many problems to be solved is keeping hot and dense plasma confined for long enough time, so that the nuclear fusion reactions can start.

Among others, a factor that compromises the quality of the confinement of magnetically confined plasma is the anomalous transport of particles attributed to the
electrostatic turbulence observed at the edge region of the plasma. There is no consensus yet about the dynamical nature of these fluctuations, and it is possible to
find in the literature models that treat it as chaotic or stochastic.

A recently published (2007) method that proposes to distinguish the dynamical nature of fluctuations in time series is the Complexity-Entropy Diagram [1-2], a
method that has recently been used in several areas, among them Plasma Physics.

In this work, we will address the problem of analyzing the dynamical nature of plasma turbulence at the plasma edge of tokamak TCABR using signals obtained
by the Langmuir probe diagnostic and compare it to published results of similar studies [3-4] done in other tokamaks using signals from different diagnostics.

 As shown by Figs. 2-3, our results show us that the position of the 
ion saturation current signals in the C-H plane corresponds to the 
Chaotic Region, the region above the fBm curve (green line).

 Agrees qualitatively with those obtained in other 
tokamaks with different diagnostics [3-4].

 There seems to be dependence between the probe radial position 
and the time-series image in the C-H plane.

 Surprisingly, the electrode effect in the confinement-enhanced 
shots does not affect significantly the position in the C-H plane.

 It would be expected that the electrode action, which 
breaks the convective structures, would decrease the 
convective transport, shifting the time-series image to a 
more stochastic region of the diagram.
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Results

Figure 2 – Left: Plasma conditions of a common shot. (a) Plasma current, 
(b) Electron density, (c) Mirnov coil potential. Highlighted is the analyzed 

interval. Right: C-H Diagram with a single shot analyzed.

Figure 1 – Methodology graphical abstract. All summarizes to computing the 
complexity and entropy of a time series using the ordinal state probability 

distribution and interpreting its relative position in the C-H Diagram.

Figure 3 – Left: Plasma conditions of a confinement-enhanced shot. (a) 
Plasma current, (b) Electron density, (c) Electrode bias. Highlighted is the 

electrode-active interval and the analyzed interval (darker shade). Right: C-H 
Diagram with 5+1 shots analyzed. The “+1” is the common shot of Fig. 2 

added here for quick comparison (highlighted points).

The C-H Diagram method starts by finding the ordinal state (π) of each d-
point sub-series of our time-series. This state can be defined as the
permutation that puts the sub-series in ascending or descending order. Then
we must compute the probability of finding a sub-series in each of the d!
possible ordinal states.

Be a time-series F = {ft for t=1,2,3,…,M}, the set of all N=M-d+1 sub-
series of F is defined as X = {(fj,...,fj+d-1) : fj ∈ F for j=1,...,N}. Using a relative
frequency as an approximation for the probability, we can compute the prob.
distribution as

𝒑𝝅 =
#{𝒙 ∶ 𝒙 ∈ 𝑿, 𝒙 has type 𝝅}

𝑵

Finally, we can use that distribution to compute the Jensen-Shannon
Complexity (CJS=C(p)) and Normalized Shannon Entropy (HS=H(p)).

The region of the diagram in which the C-H plane image of the time-series
falls tells us its predominant dynamical nature.

Chaotic?

Stochastic?


