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INTRODUCTION
Explosive synchronization (ES) has recently been observed in complex net-
works with chaotic oscillators and a frequency–connectivity-degree correlation
(GÓMEZ-GARDENES et al., 2011; HESSE; GROSS, 2014). Here, we investi-
gate the mechanism for ES transition of a complex neural network composed of
non-identical two-dimensional maps coupled by a Newman-Watts small-world
vicinity matrix (NEWMAN; WATTS, 1999). We find a range of probabilities
in which the network displays an abrupt transition to phase synchronization,
characterizing an ES. The mechanism behind the onset of ES is the following:
as the coupling parameter is increased adiabatically, ES is likely to occur as
a transition from a chaotic non-synchronized to a regular phase-synchronized
asymptotic state, this transition occurring in ε = ε† is namely frontier crisis
where the chaotic attractor collides with its attraction basin boundary (OTT,
2002; GREBOGI; OTT; YORKE, 1986). As the coupling parameter is adiabat-
ically decreased at ε = ε∗ the periodic attractor loses stability and characterizes
a saddle-node bifurcation (OTT, 2002).
NEURON MODEL
We consider a network composed of N = 10 000 nodes where the local dy-
namics is given by the neural model proposed by Chialvo (CHIALVO, 1995)

xi,t+1 = x2
i,t exp(yi,t − xi,t) + ki + ε

η

N∑
j=1

ei,jxj,t, (1)

yi,t+1 = ayi,t − bxi,t + c, (2)
where xi,t and yi,t are the activation and recovery variables. ki acts as a
constant bias or as a time-dependent additive perturbation (CHIALVO, 1995),
which here is supposed to vary randomly between [k0,k0 + σ] being σ the
coefficient of dissimilitude. a, b, and c are parameters of the model, η is a
normalization factor given by the average number of connections in the network,
ε is the coupling parameter and ei,j are elements of the network connection
matrix.

Figure 1 – Dynamical behavior of the neuron model for a = 0.89, b = 0.6, c = 0.28, and
k = 0.03, (a) xt and (b) yt dynamics. The red dashed line in panel (a) defines a Poincaré
surface in x0 = 0.5 used to evaluate the beginning of each spike and the associated phase of
the neuron.

SYNCHRONIZATION QUANTIFIER
In order to quantify phase synchronization we define a Poincaré’s surface at
x0 = 0.5 to evaluate the time of the beginning of each spike. In panel (a) of
the Fig. 1 depicts a red dashed line which correspond to this Poincaré’s surface,
so each time that a xi,t reaches x0 (upwards) θi(t) is increased by 2π, such
that the interpolation of the time varying phase is defined by (IVANCHENKO
et al., 2004; BOCCALETTI et al., 2002)

θi(t) = 2π`i + 2π t− t`,i
t`+1,i − t`,i

, t`,i ≤ t < t`+1,i, (3)

where `i is the `th spike of the ith neuron, t is the current time, and t`,i is the
time for which the ith neuron starts the `th spike.
The synchronization of the maps is evaluated by using the modulus of the
Kuramoto’s order parameter R(t) (KURAMOTO, 2012)

R(t) =

∣∣∣∣∣∣ 1
N

N∑
i=1

eiθi(t)

∣∣∣∣∣∣ , (4)

where θi is the phase of the ith neuron at the time t, defined by Eq.(3). R(t)
quantifies in a number the behavior of the network syncrhonization sinceR→ 0
for complete unsynchronized state and R→ 1 for complete phase synchronized
state.

RESULTS

Figure 2 – 〈R〉 as a function of the coupling between the
maps for a fixed probability pnl = 0.15 and σ = 0.001. The
coupling is evolved adiabatically (δε = 0.001) in two differ-
ent directions: forward and backward. In forward direction
when ε reaches a critical value ε† the network synchronize
spontaneously. In the backward direction the network loses
the synchronized state when ε = ε∗ closing the hysteretic
loop ε∗ < ε < ε†.

Figure 3 – Bifurcation diagram of the ymax for a ith of net-
work as a function of the coupling. (a) Evolution in the
forward direction. (b) Evolution in the backward direction.
In panel (a) the neuron exhibits a chaotic behavior until ε†
where the chaotic attractor collides with its attraction basin
boundary (OTT, 2002). In panel (b) the neuron exhibits pe-
riodic behavior until ε∗ in which stable and unstable orbits
coalesce and obliterate each other, this transition is called
saddle-node bifurcation (OTT, 2002).

Figure 4 – In a frontier crisis, the post-crisis behavior
(ε & ε†) the chaotic attractor is replaced by a chaotic saddle
which allows a chaotic transient τcrisis for initial conditions
initialized inside the attractor (OTT, 2002). (a) Character-
istic time of chaotic transient 〈τcrisis〉 as a function of the
distance of the critical coupling ε†. The solid curve corre-
sponds to a theoretic curve at 〈τcrisis〉 ∝ |ε− ε†|−0.85. In a
saddle-node bifurcation, the stable non-chaotic state loses
stability. In such a transition, intermittency is always ob-
served due to the quasi -stable character of the synchronized
state after the bifurcation. (b) Characteristic time of inter-
mittency 〈τint〉 as a function of |ε − ε∗|. The solid curve
corresponds to a theoretic curve at 〈τint〉 ∝ |ε− ε∗|−1/2.

CONCLUSIONS
• It is shown that the network presents explosive synchronization followed
by an hysteretic loop, where exist a bi-stable regime for ε∗ < ε < ε†.

• The transition from non-synchronized to synchronized state (at ε = ε†)
is characterized by a chaotic transition where the attractor gains stability
through a frontier crisis.

• In the transition from synchronized to non-synchronized state (at ε = ε∗)
the network loses stability by a saddle-node bifurcation.

ACKNOWLEDGMENTS
The authors acknowledge the support of:

Disclaimer: Authors are solely responsible for the printed material contained in this document.

REFERENCES
BOCCALETTI, S. et al. The synchronization of chaotic systems. Physics Reports, Elsevier, v. 366, n. 1-2,
p. 1–101, 2002.
CHIALVO, D. R. Generic excitable dynamics on a two-dimensional map. Chaos, Solitons & Fractals, Elsevier,
v. 5, n. 3-4, p. 461–479, 1995.
GÓMEZ-GARDENES, J. et al. Explosive synchronization transitions in scale-free networks. Physical Review
Letters, APS, v. 106, n. 12, p. 128701, 2011.
GREBOGI, C.; OTT, E.; YORKE, J. A. Critical exponent of chaotic transients in nonlinear dynamical systems.
Physical Review Letters, APS, v. 57, n. 11, p. 1284, 1986.
HESSE, J.; GROSS, T. Self-organized criticality as a fundamental property of neural systems. Frontiers in
Systems Neuroscience, Frontiers, v. 8, p. 166, 2014.
IVANCHENKO, M. V. et al. Phase synchronization in ensembles of bursting oscillators. Physical Review
Letters, APS, v. 93, n. 13, p. 134101, 2004.
KURAMOTO, Y. Chemical oscillations, waves, and turbulence. [S.l.]: Springer Science & Business Media,
2012. v. 19.
NEWMAN, M. E.; WATTS, D. J. Scaling and percolation in the small-world network model. Physical review
E, APS, v. 60, n. 6, p. 7332, 1999.
OTT, E. Chaos in dynamical systems. [S.l.]: Cambridge university press, 2002.


