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Abstract
In this work, we studied how the distinction of the leak conductance in the Huber and Braun et al.

model affects the synchronization of a neuronal network. We simulated the distinction of the parameter
using a truncated gaussian distribution, following the dynamical limits of the conductance.

Introduction
In 1952 Alan Lloyd Hodgkin and Andrew Huxley proposed a mathematical model for the action potential of

a neuron [1], which later awarded them with the Nobel Prize in Phisiology. The main equation is:

CM
dV
dt

= −IK − INa − IL + Iext.

The equation comes from the capacitor equation, with CM being the membrane capacitance, V is the associ-
ated potential, and IK , INa, IL and Iext are, the current associated with the potassium ion, the sodium ion,
the leak current and an external current, respectively. The currents can be written as

IK = ḡKn
4(V − EK),

INa = ḡNam
3h
(
V − ENa

)
,

IL = ḡL
(
V − EL

)
,

where ḡK , ḡNa and ḡL are the associated conductancies, and EK , ENa, EL represents the rest potential from
each ion. The parameters m, n and h are experimentally obtained.

The Huber-Braun equations
The Hodgkin-Huxley model is not capable to reproduce the bursting of spikes dynamics of a neuron, so Huber

and Braun et al. [2] modelled the equations to be thermally sensitive, with addition of two currents , Isd and
Isa, that are responsible for the activation when the potential is bellow a threshold. The new set of equations
are:

CM
dV
dt

= −IK − INa − Isd − Isa − IL + Iext,

and the new currents with temperature dependence:

IK = ρḡKaK
(
V − EK

)
,

INa = ρḡNaaNa
(
V − ENa

)
,

Isd = ρḡsdasd
(
V − Esd

)
,

Isa = ρḡsaasa
(
V − Esa

)
,

IL = ḡL
(
V − EL

)
,

where aK , aNa, asd, asa, are ionic channels opening probabilities and ρ is a function with temperature depen-
dence.
In a network with N neurons, coupled with a Small-World adjacency matrix, the Huber-Braun equations to

the i-th neuron, is

CM
dV (i)

dt
= −I(i)

K − I
(i)
Na − I

(i)
sd − I

(i)
sa − I

(i)
L + I

(i)
coup,

with

I
(i)
coup = ε

n

N∑
j=1

e(ij)r
(j)(Vsin − V (i)),

the e(ij) are the adjacency matrix elements, ε is the coupling parameter, Vsin is a sinaptic potential, n is the
normalization from the most connected neuron and r(j) is a differential equation that simulates the channel
opening. In Figure 1 we can see how the coupling parameter may affect the bursting of neurons.
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Figure 1: Bursting neurons regime with (a) ε = 0.0 and (b) ε = 0.08.

Phase synchronization

A phase θ(j)(t) can be associated with the j-th bursting neuron with t as the time of integration, t(j)k as the
time of the k-th neuronal spike and t(j)k+1 as the following spike.

θ(j)(t) = 2πk(j) + 2π
t− t(j)k

t
(j)
k+1 − t

(j)
k

,

The Kuramoto order parameter [3] can be associated with this phase

z(t) = R(t)eiψ(t) = 1
N

N∑
j=1

eiθ
(j)(t),

where R(t) is the modulus of z(t) and N is the number of oscillators. The temporal average of the parameter
can be obtained with

〈R〉 = 1
tf − ti

tf∑
t=ti

R(t).

Results
In this work, we numerically simulated the synchronization of a small-world network with N = 512 neu-

rons. First, we calculated the bifurcation diagram of the interspike interval (ISI ) so we can understand what
is the dynamics of the leak conductance (Figure 2). We observed that for values greater than ḡL = 0.15 there
is no bursting or spike regime, so for our parameter space analysis, we limited the distributions to values of
0.06 ≤ ḡL ≤ 0.15. In Figure 3 we simulated truncated gaussian distributions, where σ is the standard deviation,
to several values of the leak conductance and observed the synchronization pattern of the network when we
forced the coupling parameter.

Figure 2: Bifurcation diagram of the interspike interval for a Poincaré surface at −20mV .
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Figure 3: Parameter space for different values of standard deviation of the gaussian distribution for the leak conductance. With
σ = 0.00 a network when the conductance is fixed.

Conclusions
A small distinction of the leak conductance, such as σ = 0.001, may not affect values bigger than ε = 0.03 of

the coupling strength, but it can affect lower values. However, for σ = 0.01, it affects the network as a whole,
slowering the synchronization process and eliminating all of the synchronized regions with lower values of ε.
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