Fractal structures in the parameter space of nontwist area preserving maps

A. C. Mathias^{1*}, M. Mugnaine¹, M. S. Santos², J. D. Szezech Jr.², I. L. Caldas³, and R. L. Viana¹

¹Universidade Federal do Paraná, PR, Brasil, ²Universidade Estadual de Ponta Grossa, PR, Brasil, ³Instituto de Física da Universidade de São Paulo, SP, Brasil

*e-mail: amanda@fisica.ufpr.br

1st Perspectives on Oscillation Control

Introduction

Fractal structures are very common in the phase space of nonlinear dynamical systems¹ and can be related to the final state uncertainty with respect to small perturbations on initial conditions². In this work we investigate fractal structures in the parameter space of the standard nontwist map (SNTM)³.

The violation of the twist property in SNTM leads to the existence of a shearless invariant curve, which acts as a barrier separating chaotic regions in the phase space⁴. This internal transport barrier creates two different behaviors, namely the escape of trajectories to plus or minus infinity⁵. The parameter space of the standard nontwist map presents an involved boundary between these behaviors⁴.

In this work we present two different quantitative characterization of the boundary in parameter space. The first is the computation of the uncertainty dimension². The second is the determination of the basin entropy and basin boundary entropy to quantify the degree of uncertainty due to the fractality of the boundary⁶.

Results and Discussions

The standard nontwist map (SNTM) was defined in Ref. [3] $x_{n+1} = x_n + a(1 - y_{n+1}^2),$ $y_{n+1} = y_n - b \sin(2\pi x_n),$

where $x \in [-1/2, 1/2)$ and $y \in \mathbb{R}$ are coordinates in the phase space $\mathbb{T} \times \mathbb{R}$, and $a \in (0, 1)$ and $b \in \mathbb{R}$ are parameters of the system.

In figure bellow, which focus on the boundary part [see Fig. 11 of Ref. [5], we show magnifications of the regions labeled as 1 to 5 in Fig. (a).

FIG. (a) Region, in the parameter space of the SNTM, for which the shearless curve exists (magenta points). White points represent parameter values for which the orbits escape to plus or minus infinity. (b)-(f): A sequence of magnifications of the regions specified by numbers (1)-(5) in (a).

A cursory inspection of Fig. suggests that the boundary between the parameter regions for which a shearless invariant curve exists (magenta) and does not exist is selfsimilar and has a fractal structure. Actually the boundary cannot be completely fractal, since there are smooth parts of it corresponding to bifurcation curves, as shown by Wurm and et al⁵.