
Burst syncrhonisation in scale-free network
 Adriane S. Reis1*,  Kelly C. Iarosz2, Fabiano A. F. Ferrari3, Iberê L. Caldas2, Antônio M. 

Batista2,4, Ricardo L. Viana1

1Federal University of Paraná,  2University of São Paulo,  3Federal University of the 
Jequitinhonha and Mucuri’s Valleys,  4State University of Ponta Grossa, Ponta Grossa.

*e-mail: adriane@fisica.ufpr.br

1st Perspectives on Oscillation Control

Conclusões

Resultados e Discussões 

Referências 

Agradecimentos: 

Introdução
The construction of the neuronal model will be done using a network of networks, developed by a real human 
connectivity matrix, obtained trough experimental methods. The neuronal dynamics will be studied by the 
two-dimensional Rulkov’s map. We also studied the synchronisation in the neural network by application of 
an external signal on Rulkov's map so that all neurons could start a bursts at the same time. Neuronal 
synchronisation sometimes is related to abnormal cerebral rhythms that in general, refers to the presence of 
some neurodegenerative disease, like epilepsy, Parkinson's disease and essential tremors. In this sense, the 
synchronisation suppression technique was used through the application of a delay field in the neural 
network. 

To study the dynamics of a neural network we use 
the Rulkov map
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H is the Heaviside function, W is the connectivity 
matrix, f and p denote the cortical networks, d and 
i denote the neurons within the cortical network. 

C(l , p)
=Cout+C ins

V s=1(excitatory)
V s=−0.5(inhibitory)

4.1⩽α⩽4.3

W=W (l , p) ,(d , f )

σ=0.001
ρ=θ=−1

Q=200,P=78

The coupling term is responsable for 
synchronise the neurons in this network mode. 
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Chemical synapses 
were chosen to be 
25% inhibitory and 
75% excitatory. 
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The relieve the symptoms of 
synchonisation we are apply a 
delayed feedback signal in the 
cortical areas to suppress the 
synchronisation. 

The 78 subnetworks are generating following the 
Barabási-Albert procedure. The scale-free 
networks are characterised by a degree 
distribution that follows a power-law: P(k)∝K−γ

Figure:  Power-law fit for a scale-free network with 200 neurons 
for general, incoming and outgoing connections.

Figure:Kuramoto 
order parameter (left) 
for networks 01, 20, 
50 and 78. Order 
parameter for the 
cortical areas as a 
function of the 
chemical coupling 
(rigth).

Figure:Supression factor, Log S, as a 
function of feedback signal strength and 
delay time. 

We show that the coupling of chemical synapses term 
can synchronise the network. The results for the 
average Kuramoto order parameter showed that not 
only all networks synchronise at the same time, but also 
some regions can be internally more synchronised than 
others. We also see that as the number of disturbed 
cortical regions increases, the size of the suppression 
region decreases, giving rise to a stimulus region of 
synchronisation, and the suppression factor increases.

We measure Kuramoto 
order parameter by: 
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