Pendulum approximation
B Resonance

The resonance occurs when,
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The definition of the safety factor, in the large aspect ration approximation, is ¢ = d¢/d8. Therefore, in the resonance
position ¥,
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With this, we can calculate the respective action variable of the resonance position r*, from the non-canonical transformation

J = r?/2. The safety factor related to H is given by Equation (47) of the paper:
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In the resonance r*, we obtain,
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and the values of r* and, consequently, J* are,
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B Limiter Hamiltonian in the resonance

The Hamiltonian associated with the contribution of the Ergodic Magnetic Limiter (EML) is given by equation (53) of

the paper, the function

H1(J,0,0) = —GA,,(J) {cos(m@) + i [cos(m® — nd) + cos(mO +nd)] } , (6)
n=1
where,
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Next to the exact resonance position J*, the term cos(m6 — nd) slowly oscillates and it is the only term that influences

the system near the resonance. The other terms vanish if an average is performed over ¢. Here, we demonstrate this result.



The average of the terms cos(m6 £ nd) over ¢ is,
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In the resonance, m0 — n¢ is constant. So, considering m6 — n$ = a a constant, the average is,
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For the other terms cos(m6 £ nd), the average over ¢ is,
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cos(mb £no) = — / cos(m0 £ nd)dd = £ — [sin(m0 + 27n) — sin(m0)] = 0. (10)
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As mentioned, the term cos(m6 — nd) is the only term that does not vanish in the average performed over ¢.

The contribution of EML near the resonance associated with n and m is,

Hy(J,8,0) = —GA(J) cos(m® —no). (11)

We omit the term cos(m6) once we are not interested in the resonance associated with n = 0.

The complete Hamiltonian function, for the system near the resonance, is

H,os = Ho(J) — 6A,,(J) cos(m® — no) (12)

In the vicinity of the resonance J = J*, we have a small A J =J — J*. Expanding H,,, around the resonance, we have
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Since 6 and AJ assume small values, we assume the terms 6AJ and 6(8J)? are small and we disregard them. With this

condition, we obtain,

Hyes = Ho(J*) — GAn(J*) cos(mb — ng) + (aHO(J)) A 1<82H0(J)
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Defining, AH(AJ,0,0) = Hyos — Ho(J*)
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The Equation (48) of the paper inform us,

Therefor, the respective derivatives at J* are,
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Thus,

AH(81,0,0) = "oy — B

m qa a

e Canonical transformation

—0An(J") cos(m® —no).
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Performing the canonical transformation (AJ,0,¢) — (1,y) using the generating function F>(7,0,¢) = (m6 —nd)I, we

obtain,
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which results in,
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the Hamiltonian function becomes,
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H(l,y) = 5GI — Fcosvy,

the pendulum Hamiltonian.

B Half-width of a island
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The half-width of a island, in the pendulum approximation is I,,, = 2|F /G| 1/2, For G and F defined by (22), we obtain
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we obtain,

(26)



