
Pendulum approximation

■ Resonance

The resonance occurs when,

dθ

dφ
=

n
m

−→ dφ

dθ
=

m
n

(1)

The definition of the safety factor, in the large aspect ration approximation, is q = dφ/dθ. Therefore, in the resonance

position r∗,

q(r∗) =
dφ

dθ

∣∣∣∣
r∗
=

m
n
. (2)

With this, we can calculate the respective action variable of the resonance position r∗, from the non-canonical transformation

J = r2/2. The safety factor related to H0 is given by Equation (47) of the paper:

q(r) = qa

(
2− r2

a2

)−1

. (3)

In the resonance r∗, we obtain,

q(r∗) = qa

(
2− r∗2

a2

)−1

=
m
n
, (4)

and the values of r∗ and, consequently, J∗ are,

r∗ =
[
a2
(

2− n qa

m

)]1/2
and J∗ = a2

(
1− n qa

2 m

)
. (5)

■ Limiter Hamiltonian in the resonance

The Hamiltonian associated with the contribution of the Ergodic Magnetic Limiter (EML) is given by equation (53) of

the paper, the function

H1(J,θ,φ) =−σAm(J)

{
cos(mθ)+

∞

∑
n=1

[cos(mθ−nφ)+ cos(mθ+nφ)]

}
, (6)

where,

σ =
µ0 IL ℓ

2 π2 B0
and Am(J) =

(2J)m/2

am . (7)

Next to the exact resonance position J∗, the term cos(mθ−nφ) slowly oscillates and it is the only term that influences

the system near the resonance. The other terms vanish if an average is performed over φ. Here, we demonstrate this result.
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The average of the terms cos(mθ±nφ) over φ is,

cos(mθ±nφ) =
1

2π

∫ 2π

0
cos(mθ±nφ)dφ (8)

In the resonance, mθ−nφ is constant. So, considering mθ−nφ = α a constant, the average is,

cos(mθ−nφ)|mθ−bφ=α =
1

2π

∫ 2π

0
cos(α)dφ =

cosα

2π
2π = cosα. (9)

For the other terms cos(mθ±nφ), the average over φ is,

cos(mθ±nφ) =
1

2π

∫ 2π

0
cos(mθ±nφ)dφ =± 1

2πn
[sin(mθ±2πn)− sin(mθ)] = 0. (10)

As mentioned, the term cos(mθ−nφ) is the only term that does not vanish in the average performed over φ.

The contribution of EML near the resonance associated with n and m is,

H1(J,θ,φ) =−σAm(J) cos(mθ−nφ). (11)

We omit the term cos(mθ) once we are not interested in the resonance associated with n = 0.

The complete Hamiltonian function, for the system near the resonance, is

Hres = H0(J)−σAm(J)cos(mθ−nφ) (12)

In the vicinity of the resonance J = J∗, we have a small ∆ J = J− J∗. Expanding Hres around the resonance, we have

Hres = Hres(J∗)+
∂Hres

∂J

∣∣∣∣
J∗

∆J+
1
2

∂2Hres

∂J2

∣∣∣∣
J∗
(∆J)2 + . . .

Hres = H0(J∗)−σAm(J∗)cos(mθ−nφ)+

(
∂H0

∂J

)
J∗

∆J−σ

(
∂Am

∂J

)
J∗

cos(mθ−nφ)∆J+

+
1
2

(
∂2H0

∂J2

)
J∗
(∆J)2 +

1
2

σ

(
∂2Am

∂J2

)
J∗

cos(mθ−nφ)(∆J)2 + . . .

(13)

Since σ and ∆J assume small values, we assume the terms σ∆J and σ(δJ)2 are small and we disregard them. With this

condition, we obtain,

Hres = H0(J∗)−σAm(J∗)cos(mθ−nφ)+

(
∂H0(J)

∂J

)
J∗

∆J+
1
2

(
∂2H0(J)

∂J2

)
J∗
(∆J)2. (14)

Defining, ∆H(∆J,θ,φ) = Hres −H0(J∗)

∆H(∆J,θ,φ) =
(

∂H0(J)
∂J

)
J∗

∆J+
1
2

(
∂2H0(J)

∂J2

)
J∗
(∆J)2 −σAm(J∗)cos(mθ−nφ) (15)
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The Equation (48) of the paper inform us,

H0(J) =
2J
qa

(
1− J

2a2

)
. (16)

Therefor, the respective derivatives at J∗ are,

(
∂H0

∂J

)
J∗
=

2
qa

(
1− J∗

a2

)
=

1
q(J∗)

=
1

m/n
→

(
∂H0

∂J

)
J∗
=

n
m
. (17)

(
∂2H0

∂J2

)
J∗
=− 2

qa a2 . (18)

Thus,

∆H(∆J,θ,φ) =
n
m

∆J− (∆J)2

qa a2 −σAm(J∗)cos(mθ−nφ). (19)

• Canonical transformation

Performing the canonical transformation (∆J,θ,φ)→ (I,ψ) using the generating function F2(I,θ,φ) = (mθ−nφ)I, we

obtain,

ψ =
∂F2

∂I
= (mθ−nφ),

∆J =
∂F2

∂θ
= m I,

H (I,ψ) = ∆H(∆J,θ,φ)+
∂F2

∂φ
= ∆H(∆J,θ,φ)−n I,

(20)

which results in,

H (I,ψ) =− m2

qa a2 I2 −σAm(J∗)cosψ. (21)

Defining,

G =
−2 m2

qa a2 and F = σAm(J∗), (22)

the Hamiltonian function becomes,

H (I,ψ) =
1
2

GI2 −F cosψ, (23)

the pendulum Hamiltonian.

■ Half-width of a island
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The half-width of a island, in the pendulum approximation is Imax = 2|F/G|1/2. For G and F defined by (22), we obtain

Imax = 2
(

σAm(J∗)qa a2

2m2

)1/2

. (24)

With

σ =
µ0 IL ℓ

2π2 B0
= εξ

(
a2

qaπ

)
, Am(J∗) =

(2J∗)m/2

am , J∗ = a2
(

1− n qa

2 m

)
, (25)

we obtain,

Imax =
2 a2

m

√
εξ

2π

[
2
(

1− n qa

2 m

)]m/4
. (26)
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