Symplectic Euler method
Be a Hamiltonian function H = H(6, p) with the respective equations of motion,
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The numerical integration by the Symplectic Euler method is made by the iteration of the equations [1],
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where £ is the step and the function H,, and Hy are defined by,
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The Hamiltonian function that describe the system is defined by,
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with,
1,if0<$ <&,
f(9)= (%)
0,if & < ¢ < 2m.
With equations (2)-(5), we obtain the iteration equations
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In order to obtain 0,,.1, we apply the Newton-Rhapson method in the first equation in (6).
The implementation of the numerical integration was made in FORTRAN and the code is presented below and available

in the repository http://web.if.usp.br/controle/.
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